Reduced intestinal and renal amino acid transport in PDK1 hypomorphic mice.

نویسندگان

  • Rexhep Rexhepaj
  • Florian Grahammer
  • Harald Völkl
  • Christine Remy
  • Carsten A Wagner
  • Diana Sandulache
  • Ferruh Artunc
  • Guido Henke
  • Srinivas Nammi
  • Giovambattista Capasso
  • Dario R Alessi
  • Florian Lang
چکیده

The phosphoinositide-dependent kinase PDK1 activates the serum- and glucocorticoid-inducible kinase isoforms SGK1, SGK2, and SGK3 and protein kinase B, which in turn are known to up-regulate a variety of sodium-coupled transporters. The present study was performed to explore the role of PDK1 in amino acid transport. As mice completely lacking functional PDK1 are not viable, mice expressing 10-25% of PDK1 (pdk1(hm)) were compared with their wild-type (WT) littermates (pdk1(wt)). Body weight was significantly less in pdk1(hm) than in pdk1(wt) mice. Despite lower body weight of pdk1(hm) mice, food and water intake were similar in pdk1(hm) and pdk1(wt) mice. According to Ussing chamber experiments, electrogenic transport of phenylalanine, cysteine, glutamine, proline, leucine, and tryptophan was significantly smaller in jejunum of pdk1(hm) mice than in pdk1(wt) mice. Similarly, electrogenic transport of phenylalanine, glutamine, and proline was significantly decreased in isolated perfused proximal tubules of pdk1(hm) mice. The urinary excretion of proline, valine, guanidinoacetate, methionine, phenylalanine, citrulline, glutamine/glutamate, and tryptophan was significantly larger in pdk1(hm) than in pdk1(wt) mice. According to immunoblotting of brush border membrane proteins prepared from kidney, expression of the Na+-dependent neutral amino acid transporter B(0)AT1 (SLC6A19), the glutamate transporter EAAC1/EAAT3 (SLC1A1), and the transporter for cationic amino acids and cystine b(0,+)AT (SLC7A9) was decreased but the Na+/proline cotransporter SIT (SLC6A20) was increased in pdk1(hm) mice. In conclusion, reduction of functional PDK1 leads to impairment of intestinal absorption and renal reabsorption of amino acids. The combined intestinal and renal loss of amino acids may contribute to the growth defect of PDK1-deficient mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired intestinal NHE3 activity in the PDK1 hypomorphic mouse.

In vitro experiments have demonstrated the stimulating effect of serum- and glucocorticoid-inducible kinase (SGK)1 on the activity of the Na+/H+ exchanger (NHE3). SGK1 requires activation by phosphoinositide-dependent kinase (PDK)1, which may thus similarly play a role in the regulation of NHE3-dependent epithelial electrolyte transport. The present study was performed to explore the role of PD...

متن کامل

Impaired nutrient signaling and body weight control in a Na+ neutral amino acid cotransporter (Slc6a19)-deficient mouse.

Amino acid uptake in the intestine and kidney is mediated by a variety of amino acid transporters. To understand the role of epithelial neutral amino acid uptake in whole body homeostasis, we analyzed mice lacking the apical broad-spectrum neutral (0) amino acid transporter B(0)AT1 (Slc6a19). A general neutral aminoaciduria was observed similar to human Hartnup disorder which is caused by mutat...

متن کامل

Defective intestinal amino acid absorption in Ace2 null mice.

Mutations in the main intestinal and kidney luminal neutral amino acid transporter B(0)AT1 (Slc6a19) lead to Hartnup disorder, a condition that is characterized by neutral aminoaciduria and in some cases pellagra-like symptoms. These latter symptoms caused by low-niacin are thought to result from defective intestinal absorption of its precursor L-tryptophan. Since Ace2 is necessary for intestin...

متن کامل

Aminoaciduria, but normal thyroid hormone levels and signalling, in mice lacking the amino acid and thyroid hormone transporter Slc7a8.

LAT2 (system L amino acid transporter 2) is composed of the subunits Slc7a8/Lat2 and Slc3a2/4F2hc. This transporter is highly expressed along the basolateral membranes of absorptive epithelia in kidney and small intestine, but is also abundant in the brain. Lat2 is an energy-independent exchanger of neutral amino acids, and was shown to transport thyroid hormones. We report in the present paper...

متن کامل

Impaired intestinal and renal glucose transport in PDK-1 hypomorphic mice.

The phosphoinositide-dependent kinase-1 (PDK-1) activates the serum- and glucocorticoid-inducible kinase and protein kinase B isoforms, which, in turn, are known to stimulate the renal and intestinal Na+-dependent glucose transporter 1. The present study has been performed to explore the role of PDK-1 in electrogenic glucose transport in small intestine and proximal renal tubules. To this end, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 20 13  شماره 

صفحات  -

تاریخ انتشار 2006